Some combinations require you to get either 1st or 2nd pick, others are always possible, regardless of 1st/2nd pick. These latter ones are twice as likely.
1v1, 3 spots:
123 1st/2nd
124 1st/2nd
125 1st/2nd
126 2nd
134 1st/2nd
135 1st
136 2nd
145 1st
234 2nd
235 2nd
236 2nd
1v1, 4 spots:
1234 1st/2nd
1235 1st/2nd
1236 1st/2nd
1237 1st/2nd
1238 1st
1245 1st/2nd
1246 1st/2nd
1247 1st/2nd
1248 1st
1256 1st/2nd
1257 1st/2nd
1258 1st
1267 1st/2nd
1345 1st/2nd
1346 1st/2nd
1347 1st/2nd
1348 1st
1356 1st/2nd
1357 1st/2nd
1358 1st
1367 2nd
1368 2nd
1456 1st/2nd
1457 1st/2nd
1458 1st
2345 2nd
2346 2nd
2347 2nd
2356 2nd
2357 2nd
2367 2nd
Statistical probabilities are rather pointless though, since the outcome is influenced much stronger by other factors (total number of starting spots in distribution, wastelands/bonus size/expansion options -> starting spots not being equal, strategy (single, double, triple pick, large/small bonus etc.), personal preference).
Lucky for you, I like numbers and am really, really bored right now, so here are the probabilities for 1v1, 2 picks.
1st column = pick / combination of picks
1st row = number of territories in distribution / number of territories you want to consider elegible (= non wastelanded bonus, no 3/4-turns-to-complete for example)
Percentages = probability of getting exactly that pick / combination of picks.
6 8 10 12 14 16 18 20 22
1 80,9% 84,3% 86,9% 88,7% 90,2% 91,3% 92,2% 92,9% 93,5%
2 63,0% 69,0% 73,9% 77,6% 80,4% 82,6% 84,4% 85,8% 87,1%
3 55,3% 64,8% 71,3% 75,8% 79,1% 81,7% 83,6% 85,2% 86,6%
4 59,0% 59,9% 54,5% 48,8% 43,8% 39,5% 35,9% 32,9% 30,3%
5 38,5% 20,9% 13,0% 8,8% 6,4% 4,8% 3,8% 3,0% 2,5%
6 3,4% 1,1% 0,5% 0,3% 0,2% 0,1% 0,1% 0,0% 0,0%
6 8 10 12 14 16 18 20 22
12 43,9% 53,3% 60,7% 66,3% 70,6% 73,9% 76,6% 78,8% 80,6%
13 36,2% 49,1% 58,1% 64,6% 69,3% 73,0% 75,8% 78,2% 80,1%
23 25,9% 38,0% 47,8% 55,1% 60,8% 65,2% 68,8% 71,7% 74,1%
14 48,7% 48,7% 44,1% 39,4% 35,3% 31,8% 28,9% 26,5% 24,4%
24 30,8% 33,4% 31,1% 28,2% 25,5% 23,1% 21,1% 19,4% 17,9%
34 30,8% 33,4% 31,1% 28,2% 25,5% 23,1% 21,1% 19,4% 17,9%
15 30,8% 16,7% 10,4% 7,1% 5,1% 3,9% 3,0% 2,4% 2,0%
25 23,1% 12,5% 7,8% 5,3% 3,8% 2,9% 2,3% 1,8% 1,5%
35 15,4% 8,4% 5,2% 3,5% 2,5% 1,9% 1,5% 1,2% 1,0%
45 7,7% 4,2% 2,6% 1,8% 1,3% 1,0% 0,8% 0,6% 0,5%
16 2,3% 0,7% 0,3% 0,2% 0,1% 0,1% 0,0% 0,0% 0,0%
26 2,3% 0,7% 0,3% 0,2% 0,1% 0,1% 0,0% 0,0% 0,0%
36 2,3% 0,7% 0,3% 0,2% 0,1% 0,1% 0,0% 0,0% 0,0%
6 8 10 12 14 16 18 20 22
123 6,8% 22,3% 34,6% 43,9% 51,0% 56,5% 61,0% 64,6% 67,6%
124 20,5% 22,3% 20,8% 18,8% 17,0% 15,4% 14,1% 12,9% 11,9%
125 15,4% 8,4% 5,2% 3,5% 2,5% 1,9% 1,5% 1,2% 1,0%
126 1,1% 0,4% 0,2% 0,1% 0,1% 0,0% 0,0% 0,0% 0,0%
134 20,5% 22,3% 20,8% 18,8% 17,0% 15,4% 14,1% 12,9% 11,9%
135 7,7% 4,2% 2,6% 1,8% 1,3% 1,0% 0,8% 0,6% 0,5%
136 1,1% 0,4% 0,2% 0,1% 0,1% 0,0% 0,0% 0,0% 0,0%
145 7,7% 4,2% 2,6% 1,8% 1,3% 1,0% 0,8% 0,6% 0,5%
234 10,3% 11,1% 10,4% 9,4% 8,5% 7,7% 7,0% 6,5% 6,0%
235 7,7% 4,2% 2,6% 1,8% 1,3% 1,0% 0,8% 0,6% 0,5%
236 1,1% 0,4% 0,2% 0,1% 0,1% 0,0% 0,0% 0,0% 0,0%
I don't really claim these numbers to be 100% correct, so please prove me wrong. Which might be difficult though, because I am too lazy to explain my calculations to you ;-)